Translate

Monday, March 26, 2007

How Crystals Grow

(via Wahroongai News, Volume 32, Number 8, August 1998) I Sunagawa writes:

Mechanisms of growth
Single crystal synthetics, for jewelry purposes, are grown by two mechanisms: either growth from the melt, or growth from solution. Natural crystal growth is essentially solution growth—either from high temperature inorganic solutions (magmatic crystallization), or from aequeous solutions (supergene, hydrothermal, pneumatolytic, and metamorphic crystallization).

Melt growth
Single crystal growth from the pure melt phase—using Verneuil, float zone, or skull melt, etc technologies—is quite different from the mechanism of crystal growth that occurs in nature. For example, the curved growth (color zoning) of Verneuil synthetics is due to the fact that the solid-liquid interface in melt growth is atomistically rough (thus providing many sites for attachment of the melt to the interface of the growing crystal), and is curved in concordance with the isotherm at this growth interface. In addition, the spacial distribution of dislocations in melt grown crystals also differs from that of natural crystals—which grow from a solution phase.

Solution growth

Under solution growth conditions growth temperatures are lower, and mass transfer processes and solute-solvent interactions play a large part in the crystallization process. As a consequence, the solid-liquid interfaces of solution grown single crystals are atomistically smoother than those of melt growth crystals. This causes crystals grown from solution to have a tendency to develop polyganol crystal shapes that are bounded by flat low index faces. Indeed, this mechanism of growth is reflected in the habits, faces, surface microtopographies (growth spirals, etc), inhomogeneties, and imperfections in the crystals—and their resulting cut stones. Although natural and synthetic crystals each are grown from solutions phases; the crystals have distinct and identifiable growth features that positively identify their mode of formation. Also, synthetic gemstones grown from solutions phases—such as high temperature flux growth, hydrothermal and aequeous growth—do display a range of growth features that are quite different from those of melt growth synthetics.

In solution growth, the solute-solvent complex is transported from the bulk solution to the solid-liquid (growth) interface by diffusion and/or convection. Here the solute is released from its solvent through a desolvation process. The major driving force for crystal growth is a high concentration diffusion boundary layer that develops at the growth interface of the crystal. The rate at which the solute is incorporated into the crystal structure is controlled by the roughness of this solid-liquid interface.

For example, when the interface is atomistically rough, the universal presence of kink sites allows ready incorporation of the solute by adhesive growth, and so allow the interface to grow homogeneously and at a growth rate normal to the interface that is linearly related to the driving force. In contrast, when the interface is atomistically smooth (consisting of flat terraces, steps, and kinks in the step) the solute has difficulty finding suitable sites (e.g kink in a step, outcrops of screw dislocations) that will allow it to be incorporated into the growing crystal. As a result, growth will proceed through lateral, two dimensional spreading of growth layers parallel to the interface. Growth on smooth interfaces is slowest, so the face will develop as the most developed crystal face.

Summary
1. Crystal growth (and dissolution) rates are anisotropic and are controlled by the degree of roughness of the growth interface, e.g. rough interfaces grow fastest, while smooth interfaces grow slowly but are well developed.

2. Growth rates (habits) are modified by growth parameters such as solvent chemistry, impurity content, growth temperature and pressure, supersaturation, etc.

3. Growth sectors form in single crystals due to anisotropic growth rates associated with impurity partitioning at growth interfaces.

4. Growth rates may fluctuate within growth sectors due to fluctuations in overall growth parameters, or imbalance between diffusion and incorporation rates. This leads to variations in the concentration and distribution of point defects and impurity elements responsible for growth or color banding in growth sectors. Growth banding may be straight and parallel, or curved and hummocky—depending on the roughness of the growth surface interface. For example, natural diamonds {111} growth is straight and parallel, while its {100} growth is hummocky.

5. The partition of elements in the growth solution depends both on thermodynamics and growth kinetics. For example, Nitrogen is more concentrated in {111} sectors in diamond than {100} sectors.

6. Changed conditions during growth often lead to dissolution and regrowth, or transformation from one growth morphology to another.

7. Inclusions are trapped particularly when growth parameters are changed, on the surface of seeds, at growth sector boundaries, and at twin compositional planes. Growth controlling dislocations are often generated by these inclusions.

8. Following crystal growth, exsolution or plastic deformation induced phase changes will superimpose exsolution lamellae, mechanical twin lamellae, and dislocation tangles on pre-existing growth features.

No comments: